Abstract
Engineered metal nanoparticles are increasingly used in consumer products, in part as additives that exhibit advantageous antimicrobial properties. Conventional nanoparticle susceptibility testing is based largely on determination of nontemporal growth profiles such as measurements of inhibition zones in common agar diffusion tests, counting of colony-forming units, or endpoint or regular-interval growth determination via optical density measurements. For better evaluation of the dynamic effects from exposure to nanoparticles, a cultivation-based assay was established in a 96-well format and adapted for time-resolved testing of the effects of nanoparticles on micro-organisms. The modified assay allowed simultaneous cultivation and on-line analysis of microbial growth inhibition. The automated high-throughput assay combined continuous monitoring of microbial growth with the analysis of many replicates and was applied to Cupriavidus necator H16 test organisms to study the antimicrobial effects of spherical silver [Ag(0)] nanoparticles (primary particle size distribution D90 < 15 nm). Ag(0) concentrations above 80 μg ml(-1) resulted in complete and irreversible inhibition of microbial growth, whereas extended lag phases and partial growth inhibition were observed at Ag(0) concentrations between 20 and 80 μg ml(-1) . Addition of Ag(0) nanoparticles at different growth stages led to either complete inhibition (addition of 40 μg ml(-1) Ag(0) from 0 h to 6 h) or resulted in full recovery (40 μg ml(-1) Ag(0) addition ≥9 h). Contrary to the expected results, our data indicate growth stimulation of C. necator at certain Ag(0) nanoparticle concentrations, as well as varying susceptibility to nanoparticles at different growth stages. These results underscore the need for time-resolved analyses of microbial growth inhibition by Ag(0) nanoparticles. Due to the versatility of the technique, the assay will likely complement existing microbiological methods for cultivation and diagnostics of microbes, in addition to tests of other antimicrobial nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.