Abstract

The effects of an immiscible, lubricating polydimethylsiloxane fluid, referred to as silicone oil, on the static deformation and on the dynamic motion of a water drop on paper induced by electrowetting were investigated. The deformation of a drop on a hydrophobic film of amorphous fluoropolymers top-coated with less hydrophobic silicone oil was much more predictable, reversible and reproducible than on the uncoated surface. In the dynamic tribological experiment for a sliding drop along an inclined surface, a significant decrease in the friction coefficient, with an unexpected dependency of the contact area, was observed. Based on the curve fitting analysis, the shear stress and the net friction force were estimated quantitatively. Because of the tribological effect and the reduced shear friction force of the oil film, the static and the dynamic electrowetting states of the water drop were enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.