Abstract

Cobalt-based Tribaloy alloys are strengthened mainly by a hard, intermetallic Laves phase consisting of Co3Mo2Si or/and CoMoSi; therefore, silicon content plays a large role in the microstructure and performance of these materials. In this research, the microstructures of two cobalt-based Tribaloy alloys that are largely different in Si content are studied using scanning electron microscopy (SEM) with an EDAX energy dispersive X-ray (EDX) spectroscopy, and X-ray diffraction (XRD), fatigue strength under rotating-bending test, mechanical behavior under nanoindentation, and hardness at room and elevated temperatures using a microindentation tester. It is revealed that with higher silicon content (2.6 wt. %), T-400 has a hypereutectic microstructure with Laves phase as primary phase, whereas with lower silicon content (1.2 wt. %), T-401 has a hypoeutectic microstructure with solid solution as primary phase. T-400, containing lager volume fraction of Laves phase, exhibits better fatigue strength, in particular, at high stresses, while T-401, with less volume fraction of Laves phase, has improved ductility, exhibiting better resistance to fatigue at low stresses. The hardness of both alloys decreases with temperature, and T-401 shows higher reduction rate. T-400 is harder than T-401.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call