Abstract

In the present study, silica-calcium phosphate composites (SiO(2)-CaP composites) were developed by mixing the starting materials (SiO(2) and CaHPO(4)) in different ratios with the addition of 0.1% w/v NaOH solution. The phase composition of the SiO(2)-CaP composites was determined by XRD and FTIR. After thermal treatment at 350 degrees C/1 h and at 1000 degrees C/3.5 h; all SiO(2)-CaP composites composed of beta-quartz, alpha-cristobalite and beta-Ca2P2O7. The presence of calcium phosphate enhanced the transformation of beta-quartz into alpha-cristobalite at 1000 degrees C. SEM observation indicated favorable attachment and spreading of neonatal rat calvaria osteoblasts onto the surface of silica-rich SiO(2)-CaP composites. After attachment, these cells produced significantly higher amount of protein and expressed higher AP activity than cells attached to silica-poor samples. Results of the study suggested that the silica-based composites are more bioactive than calcium phosphate-based composites. Silica promoted the expression of osteoblast phenotype by both solution-mediated effect and direct interaction with the surface of the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.