Abstract

Introduction of small nanoparticles into polymer matrix increases the mechanical, tribological, and thermal properties of nanocomposites. In this study, poly(epoxy resin‐bismaleimide‐diaminodiphenylmethane) (EP‐BMI‐DDM) copolymers filled with silica nanoparticles (SNPs) were successfully fabricated through in situ suspension polymerization. To enhance the interfacial adhesion of silica particles to the polymer matrix, the nanoparticles were organo‐modified by silane coupling agent. Results of tensile strength test revealed that increased toughness of the composites was attributed to the microcavitations induced by organo‐modified SNPs (OSNPs). Proper loadings of OSNPs can play a critical role in antifriction performance, with optimal friction coefficient of 0.17 (2 wt% OSNPs content). Thermostabilities of the nanocomposites were characterized by differential thermal gravimetric analysis. At the maximum rate of weight loss of EP‐BMI‐DDM/3 wt% OSNP, the temperature measured 452°C, which is 52°C higher than that of pure EP‐BMI‐DDM copolymers (400°C). The produced nanocomposites feature good thermostability and self‐lubrication can be widely used as wearable material under severe working conditions with higher temperature. POLYM. ENG. SCI., 59:274–283, 2019. © 2018 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.