Abstract
Source-Separation Non-Negative Matrix Factorization (SSNMF) is a mathematical algorithm recently developed to extract scalp-recorded frequency-following responses (FFRs) from noise. Despite its initial success, the effects of silent intervals on algorithm performance remain undetermined. Our purpose in this study was to determine the effects of silent intervals on the extraction of FFRs, which are electrophysiological responses that are commonly used to evaluate auditory processing and neuroplasticity in the human brain. We used an English vowel /i/ with a rising frequency contour to evoke FFRs in 23 normal-hearing adults. The stimulus had a duration of 150ms, while the silent interval between the onset of one stimulus and the offset of the next one was also 150ms. We computed FFR Enhancement and Noise Residue to estimate algorithm performance, while silent intervals were either included (i.e., the WithSI condition) or excluded (i.e., the WithoutSI condition) in our analysis. The FFR Enhancements and Noise Residues obtained in the WithoutSI condition were significantly better (p < .05) than those obtained in the WithSI condition. On average, the exclusion of silent intervals produced a 11.78% increment in FFR Enhancement and a 20.69% decrement in Noise Residue. These results not only quantify the effects of silent intervals on the extraction of human FFRs, but also provide recommendations for designing and improving the SSNMF algorithm in future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.