Abstract

1. Using an in vivo model of erectile activity, the effects of sildenafil were studied in mice lacking neuronal or endothelial nitric oxide synthase (nNOS and eNOS, respectively). 2. Under pentobarbitone anaesthesia, intracavernous pressure (ICP) and mean arterial pressure (MAP) were monitored continuously in wild-type, nNOS-/- and eNOS-/- mice. The magnitude of erectile activity was quantified as the ratio of ICP to MAP. 3. No differences in basal ICP or MAP were observed amongst wild-type, eNOS-/- and nNOS-/- mice. Electrical stimulation of the cavernous nerve (ESCN; 4.0 V, 16 Hz, 1 ms, 30 s) evoked increases in ICP and ICP/MAP as well as penile tumescence. Responses to ESCN were reduced in nNOS-/-, but not in eNOS-/- mice. 4. L-NAME (50 mg kg(-1), i.v.) significantly increased MAP and attenuated erectile responses in both wild-type and eNOS-/- mice. 5. Sildenafil (1 mg kg(-1), i.v.) augmented electrically-evoked erectile activity in a voltage-dependent manner in wild-type mice and facilitated erectile responses in eNOS-/- mice. By contrast, sildenafil failed to augment the diminished erectile responses in mice lacking the nNOS isoform. 5. These data reveal the relative importance of nNOS, compared to eNOS, as the critical NOS isoform in the control of erectile function and illustrate that the nNOS isoform is required for sildenafil-induced facilitation of erectile responses in vivo in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.