Abstract

Psychophysical tuning curves (PTCs) measured in simultaneous masking usually sharpen as a short duration signal is moved from the onset to the temporal center of a longer duration masker. Filter shapes derived from notched-noise maskers have not consistently shown this effect. One possible explanation for this difference is that the signal level is fixed in the PTC paradigm, whereas the masker level is usually fixed in the notched-noise paradigm. In the present study, the signal level was fixed at 10 dB SL in both paradigms. The signal was 20 ms in duration, and presented at the onset or temporal center of the 400-ms masker. The masker was a pure tone presented in quiet (PTC) or in the presence of a pure-tone "restrictor" intended to limit off-frequency listening (PTCr), or it was a noise with a spectral notch placed symmetrically or asymmetrically about the 2-kHz signal frequency. Filter shapes were derived from the PTC, PTCr, and notched-noise data using the roex (p, w, t) model. The effects of signal delay and masking paradigm on filter bandwidth were analyzed with a two-factor repeated-measures ANOVA. There was a significant effect of signal delay (the filters sharpened with time) and masking paradigm (the filters derived from the notched-noise data were significantly wider than those derived from either of the PTC measurements, which did not differ from one another). Although the interaction between delay and paradigm was not significant, the filter derived from the notched-noise data sharpened more with time than did the other filters, and thus the bandwidth of the filters from the three paradigms were more similar at the longer delay than at the shorter delay. It is likely that the tuning-curve and notched-noise paradigms measure the same underlying filtering, but that various other factors contribute differentially to the derived filter shapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.