Abstract

A novel, reduced complexity iterative channel estimation algorithm for OFDM systems using superimposed pilots is proposed. It utilizes past channel estimations of double correlated channel as a side information to reduce number of iterations. Since pilots are available at all positions of the time-frequency OFDM grid in superimposed technique, the performance of the channel estimation does not degrade because of the variations of the fast fading channel between two pilots. On the other hand since no subcarrier is reserved for channel estimation purpose, superimposed pilot technique leads to improved spectral efficiency comparing to in-band OFDM pilots. However interference from data carrying signals made channel estimation more complex. In this paper, Least Square (LS) channel estimation followed by two dimensional Wiener filter for reducing OFDM symbol interference is done iteratively to achieve the Minimum Mean Square Error (MMSE). Small variations of the channel over each OFDM symbol duration are neglected due to a high data rate, but the values between different OFDM symbols are assumed correlated. The channel is modeled as a double selective, i.e. both frequency selectivity channel and Doppler shift are taken into consideration. Past channel estimates are used as side information for the present channel estimation to improve the forthcoming channel estimation at the first iteration and reduce the total number of iterations required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.