Abstract

High cycle fatigue tests (i.e., stress-controlled, axial) were conducted on monolithic AZ91D and AZ91D magnesinm alloy composites processed via squeeze casting and extrusion to contain either 15 gm or 52 gm size SiC particles, at both the 20% and 25% volume fraction reinforcement level. The effects of changes in SiC particle size and volume fraction on the high cycle fatigue behavior have been determined. In addition, the number of cracked particles on the fatigue fracture surfaces, as well as the level of damage beneath the fatigue fracture surfaces were quantified in order to determine the effects of particle size on the evolution of damage during fatigue and during overload failure. Commercial purity Mg specimens containing a large grain size were also tested in fatigue for comparison with the alloy and composite data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call