Abstract

In this work, the structural, electronic and optical properties of Si-doped barium chalcogenide [barium sulfide (BaS)] with different Si concentrations ([Formula: see text]) are investigated by the first-principles calculations based on the density functional theory (DFT). The band structures, charge densities and complex dielectric functions of the pure as well as Si-doped BaS were presented and analyzed in detail using TB-mBJ approach by WIEN2k package. It is found that silicon concentration can control the bandgap by reducing it to values around 1.4[Formula: see text]eV and 1.6[Formula: see text]eV for 12.5% and 6.25% of Si-doped BaS, respectively. The electron charge density indicates the ionic bonding between silicon and sulfur atoms due to the high electronegativity between them. In fact, the results show that the absorption peaks of Si-doped BaS are enhanced compared with pure BaS. These results suggest that the Ba[Formula: see text]SixS original structure displays excellent physical properties thereby revealing that it is a promising material in advanced optoelectronic and solar cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.