Abstract

Seedling plugs of `Better Boy' tomato plants (Lycopersicon esculentum Mill.) were potted in processed fiber:perlite (60:40% by volume) media amended or nonamended with either crystalline or powdered hydrophilic polymer (2.4 kg·m–3), and treated with one of the several concentrations (0, 2.5, 5, 7.5, and 10%) of antitranspirant GLK-8924, at the four true-leaf stage. Plants were either well-irrigated or subjected to short-term water stress, water withholding for 3 days, after antitranspirant GLK-8924 application. Leaf stomatal conductance, transpiration rate, whole plant transpirational water loss, and growth were depressed by short-term water stress and antitranspirant GLK-8924. In contrast, hydrophilic polymer amendment increased plant growth, resulting in higher transpirational water loss. The depression of stomatal conductance and transpiration rate by short-term water stress was reversed completely in 2 days after rewatering while the reduction of plant growth rate diminished immediately. The effects of antitranspirant GLK-8924 were nearly proportional to its concentration and lasted 8 days on stomatal conductance and transpiration rate, 4 days on plant growth rate, and throughout the experimental period on plant height and transpirational water loss. Plant growth was reduced by antitranspirant GLK-8924 possibly by closing leaf stomata. In contrast, hydrophilic polymer amendment resulted in larger plants by factors other than influences attributed to stomatal status. Hydrophilic polymer amendment did not interact with antitranspirant GLK-8924 on all variables measured. The application of antitranspirant GLK-8924 was demonstrated to be useful for regulating plant water status, plant growth and protecting plants from short-term water stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.