Abstract
This paper presents a comparative study of the degradation of dc characteristics and drain current collapse under dc-bias stress in passivated metal-oxide-semiconductor high-electron mobility transistor (MOSHEMT), unpassivated HEMT, and passivated HEMT devices. The Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> oxide thin film that is used as a gate dielectric and a passivation layer in MOSHEMTs is prepared by a simple, low-cost, and low-temperature liquid-phase deposition (LPD) technique. All devices are subjected to short-term dc-bias stress to investigate the reliability of the oxide and its passivation effect. In the case of MOSHEMTs and passivated HEMTs, the gradual reduction in drain current is found within 20-h drain-bias stress, which is apparently caused by the hot-electron injection and trapping in the buffer, and a barrier layer that is operated at a high drain voltage. However, faster degradation is found in unpassivated HEMTs, and some devices are permanently damaged due to the degradation of unpassivated surface states. Nonetheless, the current is partially recovered for all devices after gate stress, and no damage to the MOSHEMTs is observed. Therefore, it is believed that the Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> thin film that is prepared through the LPD technique is effective as a gate dielectric and as a surface passivation layer in reducing device degradation during dc-bias stress and in diminishing the current collapse effect in MOSHEMTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.