Abstract

Glucagon is a hormone with important effects on blood glucose regulation. This study has utilized the stable glucagon receptor antagonists, desHis¹Pro⁴Glu⁹-glucagon and desHis¹Pro⁴Glu⁹(Lys¹²PAL)-glucagon, to evaluate the effects of sustained inhibition of glucagon receptor signalling in normal mice. Twice-daily injection of either analogue for 10 days had no effect on food intake, body weight and non-fasting plasma glucose concentrations. However, insulin levels were significantly raised (p<0.05 to p<0.01) from day 3 onwards in desHis¹Pro⁴Glu⁹-glucagon mice. After 10 days, glucose tolerance was improved (p<0.05) in desHis¹Pro⁴Glu⁹-glucagon treated mice. Glucose-mediated insulin secretion and circulating cholesterol levels were significantly (p<0.05 to p<0.01) decreased in both treatment groups. Importantly, the effects of glucagon to increase blood glucose and insulin concentrations were still annulled on day 10. Insulin sensitivity was almost identical in all groups of mice at the end of the study. In addition, no changes in pancreatic insulin and glucagon content or islet morphology were observed in either treatment group. Finally, acute injection of desHis¹Pro⁴Glu⁹-glucagon followed by a 24-h fast in treatment naïve mice was not associated with any hypoglycaemic episodes. These data indicate that peptide-based glucagon receptor antagonists represent safe and effective treatment options for type 2 diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.