Abstract

In an experimental flow system capable of imparting a well-controlled shear-rate distribution with inertia to a monolayer consisting of coexisting phases, we have studied the resulting phase morphology and domain fragmentation. These evolve on distinct time scales: the viscous time associated with the viscosity in the bulk and the Marangoni stress and the fragmentation/relaxation time associated with the phase morphology. A relationship between the microstructure (line tension) and macroflow (shear rate) determining the meso length scale of the coexisting phase domains has been deduced from dimensional analysis and was found to correlate well with the quantitative experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.