Abstract

The shear layer characteristics of an open-jet acoustic wind tunnel are of key importance on measurements of aeroacoustics. The effects of thickness, spreading angle and strength of shear layer on acoustic propagation and source localization are investigated through the mean/spreading shear layer with a self-similar velocity distribution. Based on the shear flow, the acoustic propagation is computed by the linearized Euler equations via a source term, and then source localization is obtained from beamforming technique combined with the theory of Amiet. Results show that the numerical method can precisely capture the refraction and reflection after sound traversing shear layer. The thickness, spreading angle and strength of the shear layer exerts little effects on the refracted region where sound wave nearly vertical incident, while mainly influence the corresponding up/downstream region in terms of phase change. Increment of thickness, spreading angle and strength of the shear layer increases the acoustic difference between the shear layer with and without thickness, and produces a larger error of source localization downstream of the actual position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.