Abstract

AbstractQuestion:What are the effects of shallow flooding on boreal peatlands on vegetation composition and size of carbon pools in the living and dead vegetation?Location:Lake 979, Experimental Lakes Area, northwestern Ontario, Canada.Methods:A boreal basin peatland complex with treed bog, open bog, and open water was experimentally flooded by raising water level ca. 1.3 m. Vegetation and above‐ground biomass were compared between pre‐flood conditions and those nine years after flooding. Peat accumulation since flooding was also quantified.Results:Flooding caused almost all trees to die, leading to a net loss of 86% of the above‐ground living plant biomass after nine years of the flooding. Floating up of peat was rapid in the central part of the basin, and the floating peat mats were characterized by newly established open bog community. Wetland types were diversified from bog into open bog, fen, and marsh, accompanied with great species turnover. Floating open bog community accumulated the greatest amount of peat since flooding.Conclusions:This study shows that shallow flooding of bog vegetation can lead to quick re‐establishment of open bog vegetation upon the floating up of peat mats as well as changes to more diverse vegetation over decadal time spans. We estimate that the carbon pools in 2002 in living and dead plant biomass since 1992 are comparable to what they were in the above‐ground biomass in 1992. Flooding caused an initial net decrease in carbon stores, but carbon in the pre‐flood living plant biomass was replaced by both carbon in dead biomass of the pre‐flood vegetation and newly sequestered carbon in new peat growth and post‐flood living plant biomass. Possible vegetation change toward bog‐dominated system could lead to increasing rate of new peat growth, which could affect future carbon sink/source strength of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call