Abstract

A localized aureole up to 10 m wide developed around a 150-m-wide, 2.6 Ma basaltic plug at Grants Ridge, New Mexico. The plug intruded into nonwelded, pumice-rich compositionally homogenous tuff and volcaniclastic sediments of similar age (3.3 Ma). Color variation (pinkish to orange), strong local contact welding, brecciation, partial melting, and stoping characterize the host rock within the contact zone. Despite the high-temperature basaltic intrusion, there is no indication of extensive fluid-driven convective heat transfer and pervasive hydrothermal circulation and alteration of the country rock. The proportion of volcanic glass, loss on ignition (LOI), fluorine, iron, and some trace and rare earth element contents in the host rocks are somewhat depleted at the contact of the intrusion. Conversely, the degree of devitrification and the potassium content are higher along the contact. Vapor-phase expulsion of elemental species as complexes of fluoride, chloride, hydroxide, sulfide, and carbon dioxide may have been responsible for the minor depletion of the elements during the devitrification of silicic glass at near-solidus temperature related to the basaltic intrusion. The results of finite-difference numerical modeling of the intrusion as a dry, conduction-dominated system agree well with geochemical and mineralogical data. Contact welding of the host rocks apparently occurred at temperatures >700°C under a density-driven lateral load of approximately 1 MPa, corresponding to the observed depth below the former ground surface of ∼100 m. Other physical changes in the first 10 m of host rock, represented by partial devitrification and color changes, apparently occurred at temperatures of 500–600°C, which probably persisted for up to 55 years after the emplacement of the basaltic plug. Devitrification is generally enhanced by the presence of aqueous fluids; however, the abundance of volcanic glass within a short distance (∼10 m) from the plug is consistent with our inference that the plug intruded into a dry (unsaturated) environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call