Abstract

Woodland utilization is a promising disposal method for sewage sludge (SS). However, the potential risk of heavy metals (HMs) transport with runoff must be considered. Among the various factors influencing HMs loss, SS application methods (Holing application, HA; Broadcasting and mixing application, BM; Broadcasting application, BA) are likely to cause significant effects by altering soil erosion and soil aggregates. This study aimed to determine how SS application methods affect HMs loss, soil aggregates erosion, and how they are related. Accordingly, the losses of HMs in surface runoff, interflow, and sediment were quantified during six simulated rainfalls. The results demonstrated that all methods reduced surface runoff, but BA was the most effective. Additionally, BA significantly reduced the total sediment yield and the total proportion of the <0.05 mm fraction aggregates. Moreover, BA had the smallest cumulative losses of Pb and Cd through surface runoff and Cu, Pb, and Cd through sediment. Sediment was the most important pathway for HMs loss, through which over 76.56 % of HMs were lost. In BA, the <0.05 mm fraction aggregates had the lowest HMs load, whereas in other treatments had the highest (54.33 %–80.33 %). The potential ecological risk coefficient of Cd was beyond “moderate” in all the pathways of BM and “high” in the interflow of each SS treatment. Nonetheless, when the multi-elements were evaluated collectively, the potential ecological risk index for each SS treatment was categorized as “low”. Overall, BA not only reduced soil erosion but also posed no risk of HMs pollution. It should be noted that the loss of Cd in the interflow had a great impact, while the <0.05 mm fraction aggregates played a significant role in the HMs load. Thus, the current study not only provides an effective approach for the environmentally safe disposal of SS but also proposes a scientific method for the application of SS in woodlands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call