Abstract
Background Cardiomyocyte apoptosis functions essentially in ischemia/reperfusion- (I/R-) induced myocardial injury. It is suggested that autophagy is widely implicated in the regulation of cell survival and death. Sevoflurane, as a largely used inhalational general anesthetic, has been shown to have a protective effect on cardiomyocytes. However, it was yet elusive on the underlying mechanisms. Aim The objective of this study is to investigate the association of sevoflurane-mediated cardioprotective effects with autophagy regulation. Methods An in vitro hypoxia model was established in primary cardiomyocytes from fresh myocardial tissue of the rats. The apoptosis rate of myocardial cells treated with hypoxia and treated with sevoflurane was measured. Western blot and immunocytochemical assay were used to measure the protein expression. The cell proliferation rate and cell apoptosis were measured using the MTT assay and flow cytometry, respectively. Results The expression of apoptotic proteins including B cell lymphoma-2 (Bcl-2), CCAAT/enhancer-binding protein homologous protein (CHOP), glucose-regulated protein 78 (GRP78), and Bcl-2-associated X protein (BAX) in myocardium treated with sevoflurane was significantly lower than that in myocardium treated with hypoxia. The expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in myocardium treated with sevoflurane was higher than that in myocardium treated with hypoxia, suggesting better connectivity of the myocardium. Conclusion Sevoflurane treatment reduced the apoptosis of myocardial cells after hypoxia treatment.
Highlights
General anesthesia is a reversible state induced by drugs [1]
Compared with the control group, 12-hour hypoxia treatment resulted in a large number of myocardial cell apoptosis (Figure 1(a)), but in the sevoflurane group, the apoptosis caused by hypoxia was alleviated (Figure 1(b))
The morphology of the cells did not change after hypoxia or sevoflurane treatment (Figure 2(a))
Summary
General anesthesia is a reversible state induced by drugs [1]. Sevoflurane, as a largely used inhalational general anesthetic, has been shown to have a protective effect on cardiomyocytes. It was yet elusive on the underlying mechanisms. The apoptosis rate of myocardial cells treated with hypoxia and treated with sevoflurane was measured. The expression of apoptotic proteins including B cell lymphoma-2 (Bcl-2), CCAAT/enhancer-binding protein homologous protein (CHOP), glucose-regulated protein 78 (GRP78), and Bcl-2-associated X protein (BAX) in myocardium treated with sevoflurane was significantly lower than that in myocardium treated with hypoxia. The expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in myocardium treated with sevoflurane was higher than that in myocardium treated with hypoxia, suggesting better connectivity of the myocardium. Sevoflurane treatment reduced the apoptosis of myocardial cells after hypoxia treatment
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.