Abstract

The antibiotics Streptovirudin and 24010 were tested to determine their effects on the formation of lipid-linked saccharide intermediates associated with glycoprotein biosynthesis in mung bean (Vigna radiata) and suspension-cultured soybean cells (Glycine max cv. Mandarin). In vitro both compounds strongly inhibited the transfer of N-acetyl[(3)H]glucosamine from UDP-N-[(3)H]acetylglucosamine to N-acetylglucosaminyl-pyrophosphoryl-polyisoprenol and lipid-linked oligosaccharides, although they had no apparent effect on the incorporation of [(14)C]mannose from GDP-[(14)C]mannose into mannosyl-phosphoryl-dolichol with a small inhibition into lipid-linked oligosaccharides. In vivo, Streptovirudin and tunicamycin dramatically inhibited the incorporation of N-[(14)C]acetylglucosamine and [(3)H]mannose into Pronase-released material (glycoproteins), whereas there was no effect on [(3)H]leucine incorporation into Pronase-released material (protein). Because the action of Streptovirudin and antibiotic 24010 in plants and other systems is similar to that for tunicamycin, these antibiotics are believed to be closely related. The use of tunicamycin is discussed with respect to its importance in studying glycoprotein biosynthesis and function in animal and plant systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.