Abstract

The effects of parallel-type and serial-type pore nonuniformities on the effective diffusivity and the permeability of a porous material were evaluated, constant porosity and constant specific surface area being assumed. Two structural models were considered. In the first model, the porous structure was described as a bundle of cylindrical capillaries penetrating the whole thickness of the material and in the other it was described instead as a collection of randomly distributed obstacles hindering transport. Both models predicted that parallel-type pore nonuniformities produce an increase in permeability compared with uniform structures having the same porosity and specific surface area. Both models also predicted that the increase in permeability due to parallel-type pore nonuniformities would be larger than the increase in effective diffusivity. Regarding serial-type pore nonuniformities, both models predicted a decrease in permeability and that this decrease would be greater than the decrease in effective diffusivity. The predicted changes in effective diffusivity due to nonuniformities of the sample differed for the two structural models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call