Abstract

3t 31 days of age, Long-Evans female rats sustained aspirative lesions of the septohippocampal pathways and, 14 days later, received intrahippocampal suspension grafts prepared from the region including the medial septum and the diagonal band of Broca (Group S, n = 11), from the region including the mesencephalic raphe (Group R, n = 11) or from both regions together (Group S + R, n = 11). Sham-operated (Group Sham, n = 9) and lesion-only (Group Les, n = 11) rats served as non-grafted controls. Seven Sham, 7 Les and 8 rats from each transplant group were tested for home cage activity (6 months after grafting) and radial maze performance (between 7.5 and 8.5 months post-grafting). One month after completion of behavioral testing, the dorsal hippocampi of these rats were prepared for measuring choline acetyltransferase (ChAT) activity and high affinity synaptosomal uptake of both [ 3H]choline and [ 3H]serotonin. The remaining rats were used for histological verifications on brain sections stained for acetylcholinesterase (AChE). The lesions increased locomotor activitu, impaired radial maze learning and, in the dorsal hippocampus, reduced AChE positive staining, decreased ChAT activity (−73%) as well as high affinity uptake of both choline (−81%) and serotonin (−82%). Neither type of transplant produced any significant behavioral recovery. However, septal transplants increased hippocampal AChE positivity, restored ChAT activity and enhanced choline uptake to 116% and 70% of the values found in sham-operated rats, respectively; they had no significant effect on uptake of serotonin. Transplants from the raphe region had weak affects on hippocampal AChE positivity, increased both the ChAT activity and the choline uptake to 70% ad 38% of sham-operated rats, respectively, and produced an (over)compensation of the serotonin uptake which reached 324% of the values found in sham-operated rats. The co-transplantation of both regions resulted in restoration of ChAT activity (113% of sham-operated rats values), choline uptake (83% of sham-operated rats) and serotonin uptake (129% of sham-operated rats). Our neurochemical data show that after extensive denervation of the hippocampus, intrahippocampal grafts of fetal neurons may foster a neurotransmitter-specific recovery which depends upon the anatomical origin of the grafted cells; a graft rich in serotonergic neurons overcompensates the serotonergic deficit, a graft irich in cholinergic neurons attenuates the cholinergic deficit, whereas a mixture of both types of grafts produces recovery from both types of deficits. Thereby, both the feasibility and the interest of the co-grafting technique are confirmed. However, our behavioral data also suggest that separate or combined attenuation of the lesion-induced cholinergic and serotonergic deficits in the dorsal hippocampus does not seem to be a sufficient condition to induce attenuation of the lesion-induced behavioral deficits (hyperactivity, impaired memory).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.