Abstract

Thermal aggregations of Co nanoparticles have been known to be the main reason for catalyst deactivations for CO hydrogenation to hydrocarbons. Self-reduction effects of the supported Co nanoparticles on the ordered mesoporous graphitic carbon nitride (g-C3N4) with the help of functional groups of the reductive g-C3N4 revealed an unprecedented resistance to thermal aggregations of Co nanoparticles. The mesoporous g-C3N4 with abundant nitrogen-containing functional groups facilitated an easy reduction of cobalt oxides without any significant aggregation. By comparing with the mesoporous carbon support (CMK-3), the Co-supported g-C3N4 revealed a higher activity and C5+ selectivity due to the robust preservation of smaller metallic Co nanoparticles with their average sizes of ~2 nm even after the reaction. The nitrogen-containing functional groups of the g-C3N4 accelerated the reduction of Co3O4 to metallic Co as well as prevented its aggregations. The relatively inactive cobalt carbide (Co2C) phases formed on the reference Co-supported CMK-3 were effectively prohibited while using the reductive g-C3N4 support, which seems to be new alternative catalytic system without any aggregation-free reduction treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.