Abstract

An oxidative damage model of human proximal renal epithelial cells (HK-2) was established using oxalate damage. The repair effects of Astragalus polysaccharide (APS) and selenized APS (Se-APS) on damaged HK-2 cells were investigated. Differences in the adhesion and endocytosis of HK-2 cells to calcium oxalate dihydrate crystals with a size of approximately 100 nm before and after APS and Se-APS repair were also explored. The results showed that after being repaired by APS and Se-APS, HK-2 cells exhibited increased cell viability, restored cell morphology, reduced reactive oxygen species level, increased mitochondrial membrane potential, reduced phosphatidylserine eversion, and osteopontin expression. Moreover, the amount of adherent crystals on the cell surface decreased, but the amount of endocytic crystals increased. At the same concentration, Se-APS exhibited better repair effects on the damaged HK-2 cells than APS. All these findings revealed that Se-APS may be a potential drug candidate for inhibiting the formation of kidney stones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.