Abstract

Selenium is an essential element that plays a role in numerous physiological processes and is critical for the maintenance of a strong endogenous antioxidant system. Previous work by our research group reported that the organophosphate pesticide dimethoate decreased glutathione S-transferase activity (GST) in signal crayfish (Pacifastacus leniusculus) collected from the Boise River (Idaho, USA). The goals of this study were to examine whether: 1) sodium selenite modulated the endogenous antioxidants glutathione (GSH), metallothionein (MT), and glutathione S-transferase (GST), thus suggesting a mechanism of antioxidant activity, 2) dimethoate exposure (pro-oxidant stressor) decreased GST activity in a localized population of signal crayfish collected from the Snake River (Idaho, USA), and 3) investigate whether selenium cotreatment ameliorated the adverse effects of dimethoate on GST activity due to the antioxidant properties associated with selenium. Selenium and dimethoate treatments (and co-treatments) did not modulate GSH or MT concentrations at the doses tested in this study. Furthermore, neither selenium nor dimethoate was factors influencing GST activity, and no interaction was found between the treatments. While our results did not support our predictions, they are suggestive and future studies examining the protective role of selenium in pro-oxidant exposure in this species are warranted. Population-specific responses as well as seasonal variations in endogenous antioxidant expression should be considered in future experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.