Abstract

Nitric oxide synthase-2 (NOS2) is expressed during acute cardiac allograft rejection in association with myocardial inflammation, contractile dysfunction, and death of cardiomyocytes by necrosis and apoptosis. Recently, allosteric inhibitors of NOS2 monomer dimerization that block NOS2 activity have been developed. To investigate effects of selective NOS2 blockade, 15 mg/kg of BBS-1 or BBS-2 was administered twice daily subcutaneously to rats starting the day of heterotopic heart transplantation. Cardiac allograft survival was increased significantly, from 6.8 days in controls to 13.3 and to 14.2 days in NOS2-inhibited allografts. At day 5 after heart transplantation, synthesis of NOx was reduced by 53%. There were significantly fewer T lymphocytes and macrophages in the inflammatory infiltrate, as well as less edema and cardiomyocyte damage, and the International Society of Heart and Lung Transplantation score fell from 5 to 4 and 3.5. NOS2 and nitrotyrosine immunostaining and the mean numbers of apoptotic cells and of apoptotic cardiomyocytes were significantly diminished in the treated allografts. The data indicate that selective inhibition of NOS2 dimerization prolongs survival and reduces myocardial inflammation and cardiomyocyte damage in acute cardiac allograft rejection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.