Abstract

Summary Networks of large pores connected by narrower throats (pore networks) are essential inputs into network models that are routinely used to predict transport properties from digital rock images. Extracting pore networks from microcomputed-tomography (micro-CT) images of rocks involves a number of steps: filtering, segmentation, skeletonization, and others. Because of the amount of clay and its distribution, the segmentation of micro-CT images is not trivial, and different algorithms exist for achieving this. Similarly, several methods are available for skeletonizing the segmented images and for extracting the pore networks. The nonuniqueness of these processes raises questions about the predictive power of network models. In the present work, we evaluate the effects of these processes on the computed petrophysical and multiphase-flow properties of reservoir-rock samples. By use of micro-CT images of reservoir sandstones, we first apply three different segmentation algorithms and assess the effects of the different algorithms on estimated porosity, amount of clay, and clay distribution. Single-phase properties are computed directly on the segmented images and compared with experimental data. Next, we extract skeletons from the segmented images by use of three different algorithms. On the pore networks generated from the different skeletons, we simulate two-phase oil/ water and three-phase gas/oil/water displacements by use of a quasistatic pore-network model. Analysis of the segmentation results shows differences in the amount of clay, in the total porosity, and in the computed singlephase properties. Simulated results show that there are differences in the network-predicted single-phase properties as well. However, predicted multiphase-transport properties from the different networks are in good agreement. This indicates that the topology of the pore space is well preserved in the extracted skeleton. Comparison of the computed capillary pressure and relative permeability curves for all networks with available experimental data shows good agreements. By use of a segmentation that captures porosity and microporosity, we show that the extracted networks can be used to reliably predict multiphase-transport properties, irrespective of the algorithms used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.