Abstract

As Pb-containing sediments in Klity Creek have had negative impacts on the area for more than 20 years, the Supreme Court ordered the Pollution Control Department (PCD) of Thailand to remediate the site. In response to the court order, the PCD decided to reduce the contamination level by dredging the sediments of the creek. Therefore, this study is the first investigation to be conducted on the coupled effects of sediment resuspension caused by dredging and changes in water nutrient concentrations upon the remobilization of Pb from sediments into the water column. The Pb concentrations and speciation in both the water and sediments collected from upstream and downstream regions of the contaminated area were determined. The results showed that the total Pb concentrations in the water taken from all sampling sites in both the dry and wet seasons were lower than the national standard (50 μg/L), and a very low mobility index was found for Pb. The highest total Pb concentration in the sediments (6930 mg/kg) from the downstream site was 23.7- to 30.4-fold greater than those of the sediments collected from the upstream site. The predominant Pb species (organic and residual Pb fractions) in the sediments collected during the dry season were identified. However, carbonate- and Fe–Mn oxide-bound Pb fractions were mainly found in the sediments collected in the wet season. The diffusive gradients in thin films (DGT)-labile Pb concentrations, which reached 2.1 mg/L, indicated potential toxicity to aquatic organisms. A total of nine resuspension scenarios generalizing all changes in water nutrient concentrations in addition to sediment resuspension due to dredging were constructed. The results confirmed that sediment resuspension alone could remobilize Pb from the sediments into the water at levels from 0.06 to 16.9 μg/L. Sediment resuspension in water contaminated with 1 mg/L phosphate (PO43−) led to the dissolution of 28.4–73.0 μg/L Pb in the water column. Nitrate (NO3−) did not significantly remobilize Pb from the sediments into the water. The high ionic strength and activity coefficient of PO43− in the water were expected to cause the retention of dissolved Pb in the water and enhance the remobilization of Pb from the sediments due to the association of Pb with PO43− in the water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call