Abstract

Dissimilatory metal reducing bacteria (DMRB) can influence geochemical processes that affect the speciation and mobility of metallic contaminants within natural environments. Most investigations into the effect of DMRB on sediment geochemistry utilize various synthetic oxides as the Fe III source (e.g., ferrihydrite, goethite, hematite). These synthetic materials do not represent the mineralogical composition of natural systems, and do not account for the effect of sediment mineral composition on microbially mediated processes. Our experiments with a DMRB ( Shewanella putrefaciens 200) and a divalent metal (Zn II) indicate that, while complexity in sediment mineral composition may not strongly impact the degree of “microbial iron reducibility,” it does alter the geochemical consequences of such microbial activity. The ferrihydrite and clay mineral content are key factors. Microbial reduction of a synthetic blend of goethite and ferrihydrite (VHSA-G) carrying previously adsorbed Zn II increased both [Zn II-aq] and the proportion of adsorbed Zn II that is insoluble in 0.5 M HCl. Microbial reduction of Fe III in similarly treated iron-bearing clayey sediment (Fe-K-Q) and hematite sand, which contained minimal amounts of ferrihydrite, had no similar effect. Addition of ferrihydrite increased the effect of microbial Fe III reduction on Zn II association with a 0.5 M HCl insoluble phase in all sediment treatments, but the effect was inconsequential in the Fe-K-Q. Zinc k-edge X-ray absorption spectroscopy (XAS) data indicate that microbial Fe III reduction altered Zn II bonding in fundamentally different ways for VHSA-G and Fe-K-Q. In VHSA-G, ZnO 6 octahedra were present in both sterile and reduced samples; with a slightly increased average Zn-O coordination number and a slightly higher degree of long-range order in the reduced sample. This result may be consistent with enhanced Zn II substitution within goethite in the microbially reduced sample, though these data do not show the large increase in the degree of Zn-O-metal interactions expected to accompany this change. In Fe-K-Q, microbial Fe III reduction transforms Zn-O polyhedra from octahedral to tetrahedral coordination and leads to the formation of a ZnCl 2 moiety and an increased degree of multiple scattering. This study indicates that, while many sedimentary iron minerals are easily reduced by DMRB, the effects of microbial Fe III reduction on trace metal geochemistry are dependent on sediment mineral composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.