Abstract

In coastal regions, sediment-dwelling animals are exposed to a high degree of variability in seawater and sediment pH and pH is expected to decline due to anthropogenic effects. The impacts of 6-week exposure to reduced-pH seawater on length, weight, and survival of two species of molluscs that inhabit mudflats, juvenile soft-shell clams (Mya arenaria) and adult mud snails (Tritia obsoleta), were examined in two laboratory trials (2017 and 2018). The interactive effects of this prior exposure to water column acidification and subsequent sediment acidification on burrowing behaviour were then investigated for these mollusc species and adults of the amphipod Corophium volutator. In a separate experiment, the potential involvement of GABAA receptors in changes in burrowing behaviour in reduced-pH conditions was tested by exposing three species: C. volutator, T. obsoleta, and the Baltic clam Limecola balthica to sediment acidification and the neuroinhibitor gabazine. Reduced-pH water conditions only decreased the shell length of T. obsoleta in 2017 while all other morphometric metrics were not significantly impacted for this species in either year or for M. arenaria. The burrowing of T. obsoleta was reduced by 13% in acidified sediments in one of the two years but not by prior exposure to water column acidification. The burrowing of M. arenaria was not affected by either factor. The burrowing of C. volutator was impacted by the interaction of water column exposure and sediment acidification in 2017 with the acidified water, control sediment treatment having 14% higher burrowing then the remaining treatment combinations. In 2018, C. volutator burrowing was reduced in acidified sediment by 30%. The presence of gabazine only had an interactive effect on the burrowing of one species, C. volutator. The presence of gabazine increased the proportion of C. volutator individuals burrowed in the acidified water treatment by almost 30%, suggesting that GABAA neuroreceptors are involved in the mechanism for the impact of sediment acidification on burrowing in this species. The results of our experiments indicate that there is taxonomic variation in species' responses of benthic invertebrates to ocean and sediment acidification with respect to growth, survival, and burrowing behaviour.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call