Abstract
In this paper, the effects of second-order difference-frequency wave forces on the global motion of an offshore wind turbine system with a large displacement under the survival condition are studied. In this case, the hydrodynamic force is the main force because the blades are feathered to reduce the lifting force. The first-order hydrodynamic forces are calculated by WADAM, while the second-order wave forces are calculated by a customized MATLAB module. Then the hydrodynamic coefficients are transferred to the wind turbine analytical code FAST. Through the comparisons of dynamic responses between the first- and second-order numerical models, it is found that the second-order wave forces significantly influence the motion of floating wind turbine under the survival condition. Moreover, neglecting the second-order force significantly underestimates the tension forces in the mooring lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.