Abstract

Minimizing the transformer magnetizing inductance is essential for the soft switching operation of the LLC resonant converter, despite the fact that it results in higher values of magnetizing current, which deteriorates the converter efficiency. Furthermore, it is a well-known practice to utilize the transformer leakage as an inductive component in the resonant tank to improve the power destiny. This paper reveals that the transformer voltage gain can be improved when the transformer leakage inductance in concentrated on the secondary side to avoid the voltage drop inflicted by the relatively large value of the magnetizing current (im), especially at light load condition. The theoretical discussion relies on the asymmetry of the EI core by placing the secondary winding in a close contact with the magnetic core and placing the primary winding in the vicinity of the air gap. Moreover, noise absorber had been utilized to control the leakage inductance value. The proposed transformer design maximizes the value of the secondary leakage inductance and minimizes the primary leakage inductance. Alongside with the theoretical discussion, experimental tests had been conducted to evaluate the proposed method using a 390V-12V, 220W LLC resonant converter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call