Abstract

The effects of second phases on the fracture behavior of Mg-10Gd-3Y-0.6Zr alloy were investigated. The results show that the fracture mode can be generally described as ductile transgranular fracture in as-extruded condition and intergranular fracture in peak-aged condition. In as-extruded condition, the ductile transgranular fracture occurs by the formation and transgranular propagation of the microcrack from the broken primary phases. However, as the collaboration effects of precipitates inside grains and on the grain boundaries have the tendency to reduce the cohesive strength of the grain boundary, and make the grain boundaries the favorable path for crack propagation, the intergranular fracture occurs in peak-aged condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.