Abstract
In this study, the impact behaviors of nano silica (SiO2 nanoparticles), MWCNTs (multi-walled carbon nanotube), and SiO2+MWCNTs (nano silica vs multi-walled carbon nanotube hybrid) nanoparticle additives in basalt fiber reinforced composites exposed to seawater corrosion were investigated. The Mediterranean was chosen as the corrosive sea water due to its high salinity. Basalt fiber reinforced composites immersed in seawater have quick mass absorption during the first 30 days. However, it can also vary between the first 28 and 40 days depending on the structure of the composite and environmental conditions. Immersion times were determined as 0, 10, 20, and 40 days. Tensile and low velocity impact tests were performed to evaluate the mechanical performance after seawater corrosion. Low velocity impact tests were carried out at 10 and 20 J energy levels. The aim of this study was to examine the effects of corrosion caused by quick mass absorption on the tensile and impact behaviors of basalt fiber reinforced composites. And also to investigate the contribution of SiO2 and MWCNT nanoparticle additives to the mass absorption mechanism and mechanical performance of basalt fiber reinforced composites. SiO2 and MWCNT nanoparticle additives increased the tensile and impact strength of basalt fiber reinforced composites. However, the tensile and impact behaviors of nanoparticle filled and nanoparticles unfilled basalt fiber reinforced composites were adversely affected by the seawater corrosion environment. Due to the geometric structure of SiO2 nanoparticles, the best mechanical performance was observed in SiO2 filled basalt fiber reinforced composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.