Abstract

BackgroundMechanically assisted crevice corrosion of modular tapers continues to be a concern in total joint arthroplasties. A surgical factor that may affect taper fretting corrosion during cyclic loading is seating load magnitude. In this study, modular head-neck taper junctions were seated, capturing load-displacement, over a range of axially oriented loads, and electrochemical and micromotion data were captured during short-term incremental cyclic fretting corrosion (ICFC) tests. The hypothesis is low seating loads result in greater motion and fretting corrosion in ICFC tests. The effect of assembly load on pull-off force post-ICFC testing was also evaluated. MethodsThe study employed custom-built test fixtures which measured head-neck micromotion and an electrochemical chamber to monitor electrochemical reactions. Head-neck motion measurements were captured using 2 noncontact differential variable reluctance transducers mounted to the head. Seating experiments ranged from 1000 to 8000 N. ResultsSignificant differences due to seating loads were reported in seating displacement, ICFC subsidence, and fretting current at 4000 N cyclic load. Seating load decreased but did not eliminate currents. Fretting onset load remained fixed (approximately 1200 N) for tapers seated above 2000 N. Fretting subsidence was negligible for seating loads of 4000 N or higher, and increased subsidence was observed below 4000 N. ConclusionThis short-term test method evaluated the acute performance of modular implants which were assembled under various loads and demonstrated the link between seating loads, fretting motions, and electrochemical reactions. While increased seating loads reduced fretting corrosion and taper subsidence, it did not prevent fretting corrosion even at 8 kN seating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.