Abstract

In present study comparative proteomics was utilized to identify ovarian protein profiles and correlate the expression of these proteins with adiposity induced changes in ovarian activity leading to suppression of ovulation (delayed ovulation) in the bat, S. heathi. To achieve this, two-dimension gel electrophoresis combined with protein identification by tandem mass spectrometry (LC–MS/MS) was applied. Protein profiles were obtained from intact ovaries of bats collected during recrudescence (basal body weight) and delayed ovulation (increased body weight) phases of reproductive cycle. Out of 42 differentially expressed protein spots, 15 protein spots were identified by LC–MS/MS. A majority of the 15 protein spots identified belonged to a group of enzymes within the glycolytic and citrate cycles. Greater concentrations of these enzymes were found during the period of delayed ovulation, which may be responsible for an increase in the production of ATP within the ovary. The increased metabolic activity and energy production observed within the ovary during winter dormancy may be required for increased steroidogenic activity during this period. The protein 14-3-3 identified by LC–MS/MS was verified by immunoblotting, which confirmed its increased expression during the period of delayed ovulation and may be associated with development of insulin resistance. Treatment with adipokines (adiponectin, resistin) is responsible for increased expression of 14-3-3 protein in the ovary of S. heathi. Adiposity-associated rise in adipokines are thus responsible for increased expression of 14-3-3 protein in the ovary of S. heathi, which may be responsible for prolonged survival of antral follicles and suppression of ovulation. The 14-3-3 protein may represent a new marker for adiposity associated ovarian anovulation (disorders).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.