Abstract

Acoustic wave fields in an ocean waveguide with a sediment layer having continuously varying density and sound speed overlying an elastic subbottom are considered in this analysis. The objective of this study is to investigate the effects of seabed acoustic properties, including the density and sound speed of the sediment layer and subbottom, on the characteristics of the wave fields. Examination of the reflection coefficient, wavenumber spectrum, and noise intensity of the sound field through numerical analysis has shown that the variation in the acoustic properties in the sediment layer is an important factor in determining the reflected or noise sound fields. In particular, the sediment thickness-to-wavelength ratio and the types of variation of acoustic properties inside the layer give rise to many characteristics that potentially allow for acoustic inversion of the seabed properties. With regard to the wave-field components in a shallow-water environment, the various types of waves existing in a seismo-acoustic waveguide have been illustrated. The results indicate that the effects of the sediment properties on the wavenumber spectrum are primarily on the continuous and evanescent regimes of the wave field. The noise intensity generated by distributive random monopoles at various depths, together with the effect of refractive sound-speed distribution in the water column, has been obtained and analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call