Abstract

In a recent paper (Phys. Rev. B {\bf 78}, 075316 (2008)), Sajeev and Moiseyev demonstrated that the bound-to-resonant transitions and lifetimes of autoionizing states in spherical quantum dots can be controlled by varying the confinment strength. In the present paper, we report that such control can in some cases be compromised by the presence of Coulomb impurities. It is demonstrated that a screened Coulomb impurity placed in the vicinity of the dot center can lead to bound-to-resonant transitions and to avoided crossings-like behavior when the screening of the impurity charge is varied. It is argued that these properties also can have impact on electron transport through quantum dot arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.