Abstract

Stem CO2 efflux (E s) has been estimated from a temperature-related equation, but sap flux often affects measurements of E s, which leads to misunderstanding real stem respiration. In order to observe the relationship between E s and stem temperature and to analyze the effect of sap velocity on E s, stem temperature, E s and sap flux were measured from a subtropical Schima superba plantation in South China on three trees for consecutive 3 days in July and October 2009. Stem temperature, E s and sap velocity were significantly higher in July than in October. Stem temperature could explain 17–41 and 54–75% variations of E s in July and October, respectively. A negative relationship between E s and stem temperature was found during 1800–2300 hours in July. The daytime E s was 9.2, 4.3 and 2.4% higher than the predicted for three trees in July, and this occurred only on Tree 1 in October. Sap velocity was positively correlated with E s for three trees in July, and the increase of E s with the increase of sap velocity was only observed on Tree 1 in October. These results demonstrated that the occurrence of sap flux could account for the increase of daytime E s, and the effect of sap velocity on E s varied with the seasons from the S. superba stem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.