Abstract

Amplitude variation with angle (AVA) is a technique widely used in the characterisation of hydrocarbon reservoirs and assumes the Earth’s crust to be an isotropic medium. Yet, anisotropy is ubiquitous in stratigraphic sequences and has first-order effects on seismic AVA responses when investigating subsurface prospects. This work analyses the effects of anisotropic strata on AVA responses using the Lower Goru Formation, middle Indus basin (Pakistan) as a case study. In the study area, shale intervals are interbedded with reservoir sands of the Sawan gas field. Shales in this field form laminae or are dispersed within reservoir sands, making the Lower Goru Formation an example of a vertically transversely isotropic (VTI) medium. In this work, we calculate the effective (saturated) mechanical properties of the Lower Goru Formation based on rock physics templates; the Backus (1962) average typically designed for layered media, combined with the empirical relations of Brown and Korringa (1975) and Wood (1955). The input data used in our rock physics modelling is based on detailed petrophysical analyses of well data. Using the saturated effective mechanical properties of the Lower Goru Formation, we generate angle-dependent reflection coefficient curves (and seismic AVA responses) based on exact and approximate solutions, for both isotropic and anisotropic reservoir scenarios. Our results suggest that the effects of lithological anisotropy are more pronounced in places with thick shale beds within reservoir sands. Conversely, angle-dependent reflection curves, and seismic AVA responses based on isotropic or anisotropic cases, give similar solutions in the presence of thin shale beds. As a corollary of this work, we present a Bayesian inversion method for the estimation of porosity in VTI media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.