Abstract

Sampling and analytical procedures used in the liquid scintillation counting technique to determine radon in water were examined in a series of experiments. Factors evaluated included the following: sample collection, length of storage, sources of variability, choice of scintillation cocktail, and extraction procedure. Collection using the direct syringe technique yielded the highest radon activities, but its widespread use may be limited by cost and problems with distribution of syringes. Storage in VOA bottles was primarily affected by radioactive decay; however, leakage also led to decreases in radon activity. Sample preparation and instrumentation caused the majority of the variability observed in this study. An Opti-Fluor O scintillation cocktail yielded significantly higher count rates and was less expensive than toluene and mineral oil based cocktails. The data suggested that while the extraction procedure should not be considered in calculating the efficiency factor, samples should be shaken to maximize the rate of transfer of radon to the cocktail phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call