Abstract

Abstract Potential errors or uncertainties of annual loading estimations for water quality parameters such as suspended solids (SS), nitrate-nitrogen (NO3-N), ortho-phosphorus (Ortho-P), potassium (K), calcium (Ca), and magnesium (Mg) can be greatly affected by sampling frequencies. In this study, annual loading estimation errors were assessed in terms of the coefficient of variation, relative bias, and probability of potential errors that were estimated with statistical samples taken at a series of sampling frequencies for a watershed in northwestern New Brunswick, Canada, and one of its sub-watersheds. Results indicate that annual loading estimation errors increased with decreasing sampling frequency for all water quality parameters. At the same sampling frequencies, the estimation errors were several times greater for the smaller watershed than those for the larger watershed, possibly due to the flushing nature of streamflows in the smaller watershed. We also found that low sampling frequency tended to underestimate the annual loadings of water quality parameters dominated by stormflow events (SS and K) and overestimate water quality parameters dominated by baseflow (Mg and Ca). These results can be used by hydrologists and water quality managers to determine sampling frequencies that minimize costs while providing acceptable estimation errors. This study also demonstrates a novel approach to assess potential errors when analyzing existing water quality data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call