Abstract

BackgroundMatrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (λ) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of λ–Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of λ due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of λ.Methodology/Principal FindingsUsing data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating λ for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of λ with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography.Conclusions/SignificanceWe found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.

Highlights

  • Matrix models [1,2] are an important tool used by ecologists to study the demography of structured populations and for conducting population viability analyses

  • Our results demonstrate that biased estimates of l can result from small sample sizes, as predicted by Jensen’s Inequality

  • This is not because estimates of vital rates based on small sample sizes are biased

Read more

Summary

Introduction

Matrix models [1,2] are an important tool used by ecologists to study the demography of structured populations and for conducting population viability analyses. They are flexible, readily applicable to a diversity of life-history strategies, and there is a broad body of literature describing their construction, interpretation, and limitation reviewed in [3,4]. Even unbiased estimates of vital rates do not ensure unbiased estimates of l–Jensen’s Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of l due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of l

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.