Abstract

Legume tissue quality is a key factor for enhancement of feed resources and contribution to soil fertility in mixed crop-livestock production systems. To compare methods used by soil scientists and animal-nutritionists to assess quality of plant materials, three woody tropical legumes with contrasting qualities were used: Indigofera zollingeriana Miq. (Indigofera), Cratylia argentea Benth. (Cratylia) and Calliandra houstoniana (Mill.) Stan. var. calothyrsus (Meiss.) Barn. CIAT 20400 (Calliandra). Plant material of each legume was used either fresh, freeze-dried, frozen, oven-dried (60 °C) or air-dried in order to estimate extents and rates of aerobic degradation in litterbags on the soil during 140 days and anaerobic degradation in an in-vitro gas production experiment during 144 h. Results showed, that aerobic decomposition rates of leaf tissues were highest for Indigofera (k = 0.013 day−1), followed by Cratylia (k = 0.004 day−1) and Calliandra (k = 0.002 day−1). Gas production rates evaluated under anaerobic conditions, were highest for Indigofera (k = 0.086 h−1), intermediate for Cratylia (k = 0.062 h−1) and lowest for Calliandra (k = 0.025 h−1). Decomposition and gas production rates differed (P 0.05). The extent of decomposition was highest for Indigofera (82.5%, w/w), followed by Cratylia (44.6%) and Calliandra (26.4%). The extent of gas production was highest for Indigofera (218.8 ml), followed by Cratylia (170.1ml) and Calliandra (80.1 ml). Extent of decomposition and extent of gas production were significantly different (P 0.80, P < 0.001) to IVDMD and gas production (r = 0.53, P < 0.001). These results indicate that plant measurements (IADF, IVDMD and gas production) used to assess forage quality in animal nutrition studies are more rapid and resource saving predictors for aerobic decomposition of tropical legumes than initial plant quality ratios (lignin+polyphenols/N and lignin+total condensed tannins/N) commonly used by many researchers. Furthermore, this study confirms the potential usefulness of IVDMD for screening tropical legumes for soil fertility management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.