Abstract

BackgroundExtracts from Salvia miltiorrhiza Bunge have been used in traditional Asian medicine to treat coronary heart disease, chronic renal failure, atherosclerosis, myocardial infraction, angina pectoris, myocardial ischemia, dysmenorrheal, neurasthenic insomnia, liver fibrosis and cirrhosis. The aim of the study was to investigate the anti-RANK signal effect of the combination of S.miltiorrhiza Bunge (SME) and liquefied calcium (LCa) supplement with ovariectomized (OVX-SML) mice, a osteoporosis animal model. Results were compared to 17β-estradiol (E2) treatment.MethodsA total of 70 female ICR strain mice (7 weeks) were randomly divided into 10 groups with 7 mice in each group as follows: (1) sham-operated control mice (sham) received daily oral phosphate-buffered-saline (PBS) of equal volumes through oral administration. (2) OVX mice received a daily oral administration of PBS (OVX). (3) OVX mice treated daily with 50 mg/kg b.w./ day of SME (4) with 100 mg/kg b.w./day of SME or (5) with 200 mg/kg b.w./day of SME via oral administration. (6) OVX mice treated daily with 50 mg/kg b.w./day of SML (7) with 100 mg/kg b.w./day of SML or (8) with 200 mg/kg b.w./day of SML via oral administration. (9) OVX mice treated daily with 10 ml/kg b.w./day of LCa (10) OVX mice received i.p. injections of 17β-estradiol (E2) (0.1 mg/kg b.w./day) three times per week for 12 weeks.Resultsmicro-CT analysis revealed that oral administration of SML inhibited tibial bone loss, sustained trabecular bone state, and ameliorated bone biochemical markers. In addition, SML administration compared to SEM and LCa reduced serum levels of RANKL, osteocalcin and BALP through increased serum levels of OPG and E2 in OVX mice. SML also had more beneficial effects on protection of estrogen-dependent bone loss through blocking expression of TRAF6 and NFTAc1 and produces cathepsin K and calcitonin receptor to develop osteoclast differentiation.ConclusionThese data suggest that S. miltiorrhiza Bunge combined with liquefied calcium supplement has an inhibitory activity in OVX mice. This result implies the possibility of a pharmacological intervention specifically directed toward a disease such as osteoporosis where decreased bone strength increases the risk of a broken bone.

Highlights

  • Extracts from Salvia miltiorrhiza Bunge have been used in traditional Asian medicine to treat coronary heart disease, chronic renal failure, atherosclerosis, myocardial infraction, angina pectoris, myocardial ischemia, dysmenorrheal, neurasthenic insomnia, liver fibrosis and cirrhosis

  • Combination of SME and LCa (SML) had more beneficial effects on protection of estrogen-dependent bone loss through blocking expression of TNF receptor associated factor 6 (TRAF6) and Nuclear factor of activated Tcells (NFTAc1) and produces cathepsin K and calcitonin receptor to develop osteoclast differentiation. These data suggest that S. miltiorrhiza Bunge combined with liquefied calcium supplement has an inhibitory activity in OVX mice. This result implies the possibility of a pharmacological intervention directed toward a disease such as osteoporosis where decreased bone strength increases the risk of a broken bone

  • Effects of SML on body weight and uterus weight in OVX mice We investigated the effects of S. miltiorrhiza combined with liquefied calcium supplement (SML) in vivo using

Read more

Summary

Introduction

Extracts from Salvia miltiorrhiza Bunge have been used in traditional Asian medicine to treat coronary heart disease, chronic renal failure, atherosclerosis, myocardial infraction, angina pectoris, myocardial ischemia, dysmenorrheal, neurasthenic insomnia, liver fibrosis and cirrhosis. Osteoporosis is often regarded as a compensatory disease for reduced bone strength and is influenced by mechanisms controlling bone remodeling [1, 2]. In women, remodeling mechanisms are significantly influenced by ovarian function and are remarkably changed by ovarian aging and reproductive damage. These signs are related to an estrogen deficiency, and not a genetic or mechanical cause [3]. Type I osteoporosis is the most common in postmenopausal women and is related to an estrogen deficiency. Type II osteoporosis is senile osteoporosis, caused by aging, and is largely due to decreased dietary calcium and vitamin D or increased parathyroid gland activity [4, 5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call