Abstract

Many industrial applications of oil-in-water emulsions involve salts containing ions of different valence. The properties of the oil-water interface (e.g., interfacial tension, zeta potential and interfacial shear viscosity) are strongly influenced by the presence of these salts. This work investigates the role of NaCl, CaCl2 and AlCl3 on these properties of the hexane-water interface in presence of a cationic surfactant, viz., hexadecyltrimethylammonium bromide. Addition of salt enhanced the adsorption of surfactant molecules at the hexane-water interface, which increased the interfacial charge density, and consequently, the zeta potential. Interfacial shear viscosity significantly decreased in the presence of salt. The effectiveness of salt at a given concentration was in the sequence: AlCl3 > CaCl2 > NaCl. The hexane-in-water emulsions coarsened with time due to the coalescence of hexane droplets. The increase in droplet size with time was analyzed by a model based on the frequency of rupture of the thin aqueous film. The rate constants for coalescence were determined. The rate of coalescence increased in presence of salt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call