Abstract

Lunasin, a bioactive peptide, was originally found in soybeans, and it has exhibited multiple biological functions. On the basis of previous studies, salt stress was found able to induce changes in many polypeptides and translatable mRNA levels in plants. Salt stress was applied to soybean germination, with water treatment as a control group, to evaluate the effects of salt stimulation on lunasin accumulation and activity during soybean germination. Lunasin content gradually increased in the control group during germination, reached the highest level after six hours of imbibition, and then slowly decreased. Under salt exposure, lunasin content showed a similar trend to that of the control group. The lunasin content in salt-treated soybean was significantly higher than that in the control group. Lunasin peptide was purified from soybean after six hours of imbibition and it was then used for function evaluation. Purified lunasin from salt-stress-germinated soybean (6 h-LSGS) exhibited stronger antioxidant activity than lunasin from water-treatment-germinated soybean (6 h-LWGS) and soybean seed without imbibition (DRY). The 6 h-LSGS presented anti-inflammatory activity on LPS-induced macrophage cells (p < 0.05) by suppressing the release of nitric oxide (NO) and proinflammatory cytokines, including IL-1 and IL-6. The gene expression of NOS, IL-1, IL-6, and TNF-α was significantly inhibited by 6 h-LSGS. Further, 6 h-LSGS exhibited superior antiproliferation activity on human breast-cancer cells MDA-MB-231 when compared to 6 h-LWGS and DRY. Overall, this study offers a feasible elicitation strategy for enhancing lunasin accumulation and its properties in soybean for possible use in functional food.

Highlights

  • Lunasin, which is a soybean-derived bioactive peptide, has shown positive effects on many biological functions

  • During the germination of soybean seeds, lunasin bands significantly deepened in hours 0–6, peaking at 6 h, and obviously decreasing thereafter (Figure 1A)

  • This suggests that lunasin content was significantly accumulated after salt treatment, which indicated that it was viable for increasing the content of lunasin in soybean by the salt treatment of the germinating soybeans

Read more

Summary

Introduction

Lunasin, which is a soybean-derived bioactive peptide, has shown positive effects on many biological functions. Originally discovered in soybeans, has a molecular weight of. Gly, and Asp residues and the cell-adhesion module that is composed of nine aspartic acid residues at the carboxyl terminal determine the biological activity of lunasin. Lunasin reaches the target organ or tissue through decomposition by the gastrointestinal digestive enzyme, serum protease, and peptidase in the body. Extensive scientific research has shown that lunasin has natural antioxidant, antiallergic, and anticancer effects, and it helps to regulate cholesterol biosynthesis in vivo [2]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call