Abstract

<p class="abstract"><strong>Background:</strong> Salinity is one of the most serious abiotic stresses for crop plant growth. Chickpea grows under a wide range of climatic conditions and highly sensitive to salt stress. To determine the most tolerant genotype to salinity stress, an experiment was done as factorial form under completely block design (CRD) with three replications.</p><p class="abstract"><strong>Methods:</strong> The experimental treatments were four NaCl salinity levels (0, 5dS/m, 10dS/m and 15dS/m) and five chickpea landraces (Dadi, Dido, Dida, Dimi and Soya). </p><p class="abstract"><strong>Results:</strong> Results indicated that significant was observed in root length, shoot length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, seedling shoot and root reduction traits in stress conditions. Dimi, Dido and Dadi were showed that high reduction in root length, shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, seedling root and shoot in salinity conditions, respectively. The ANOVA for landraces and their interaction was found to be highly significant at (p<0.001) and (p<0.05) with all parameters. Landraces Dimi, Dido and Dadi were found salt tolerant but Soya was highly salt sensitive during seedling growth stage. Shoot dry weight had the most positive and significant correlation with root dry weight (r =0.987**). Seedling shoot reduction depicted a negative and significant correlation with total dry matter (r =-0.734**).</p><strong>Conclusions:</strong> This study indicated that developing genetic variability by identifying salt tolerant landrace is one of the appropriate strategies used to overcome salinity problem in arid and semi-arid areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call