Abstract

The ultrastructure and density of chloride cells in the gill, opercular epithelium, and opercular skin of the euryhaline self-fertilizing fish Rivulus marmoratus (Cyprinodontidae) were studied with electron and fluorescence microscopy. R. marmoratus raised from birth in 1, 50, 100, and 200% seawater were compared. Chloride cells from fish raised in each of the four salinities exhibited an invaginated “pit” structure at the apical crypt. Multicellular complexes were present in the 1% seawater group and in those fish raised in higher salinities where elaborate interdigitations were seen between cells. Chloride cells from gills of fish raised in 200% seawater had a significantly higher percentage of their cytoplasmic volume composed of mitochondria than did those from fish raised in 1% seawater (69.9% vs 37.4%). The opercular skin and opercular epithelium had the same density of chloride cells (4.2×104-4.5×104 chloride cells/cm2), and this number did not vary significantly with increased salinity. The opercular skin thus appears far more responsive to environmental salinity than the opercular epithelium. Chloride cells from the opercular epithelium of fish raised in 200% seawater were found to be 39% larger than those from fish raised in 1% seawater, whereas the chloride cells from the opercular skin of the 200% seawater group were 107% larger than those from the 1% seawater group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call